Intracellular siderophores are essential for ascomycete sexual development in heterothallic Cochliobolus heterostrophus and homothallic Gibberella zeae.

نویسندگان

  • Shinichi Oide
  • Stuart B Krasnoff
  • Donna M Gibson
  • B Gillian Turgeon
چکیده

Connections between fungal development and secondary metabolism have been reported previously, but as yet, no comprehensive analysis of a family of secondary metabolites and their possible role in fungal development has been reported. In the present study, mutant strains of the heterothallic ascomycete Cochliobolus heterostrophus, each lacking one of 12 genes (NPS1 to NPS12) encoding a nonribosomal peptide synthetase (NRPS), were examined for a role in sexual development. One type of strain (Delta nps2) was defective in ascus/ascospore development in homozygous Delta nps2 crosses. Homozygous crosses of the remaining 11 Delta nps strains showed wild-type (WT) fertility. Phylogenetic, expression, and biochemical analyses demonstrated that the NRPS encoded by NPS2 is responsible for the biosynthesis of ferricrocin, the intracellular siderophore of C. heterostrophus. Functional conservation of NPS2 in both heterothallic C. heterostrophus and the unrelated homothallic ascomycete Gibberella zeae was demonstrated. G. zeae Delta nps2 strains are concomitantly defective in intracellular siderophore (ferricrocin) biosynthesis and sexual development. Exogenous application of iron partially restored fertility to C. heterostrophus and G. zeae Delta nps2 strains, demonstrating that abnormal sexual development of Delta nps2 strains is at least partly due to their iron deficiency. Exogenous application of the natural siderophore ferricrocin to C. heterostrophus and G. zeae Delta nps2 strains restored WT fertility. NPS1, a G. zeae NPS gene that groups phylogenetically with NPS2, does not play a role in sexual development. Overall, these data demonstrate that iron and intracellular siderophores are essential for successful sexual development of the heterothallic ascomycete C. heterostrophus and the homothallic ascomycete G. zeae.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Histidine kinase two-component response regulator proteins regulate reproductive development, virulence, and stress responses of the fungal cereal pathogens Cochliobolus heterostrophus and Gibberella zeae.

Histidine kinase (HK) phosphorelay signaling is a major mechanism by which fungi sense their environment. The maize pathogen Cochliobolus heterostrophus has 21 HK genes, 4 candidate response regulator (RR) genes (SSK1, SKN7, RIM15, REC1), and 1 gene (HPT1) encoding a histidine phosphotransfer domain protein. Because most HKs are expected to signal through RRs, these were chosen for deletion. Ex...

متن کامل

A novel class of gene controlling virulence in plant pathogenic ascomycete fungi.

Insertional mutants of the fungal maize pathogen Cochliobolus heterostrophus were screened for altered virulence. One mutant had 60% reduction in lesion size relative to WT but no other detectable change in phenotype. Analysis of sequence at the insertion site revealed a gene (CPS1) encoding a protein with two AMP-binding domains. CPS1 orthologs were detected in all Cochliobolus spp. examined, ...

متن کامل

A Putative Transcription Factor MYT2 Regulates Perithecium Size in the Ascomycete Gibberella zeae

The homothallic ascomycete fungus Gibberella zeae is a plant pathogen that is found worldwide, causing Fusarium head blight (FHB) in cereal crops and ear rot of maize. Ascospores formed in fruiting bodies (i.e., perithecia) are hypothesized to be the primary inocula for FHB disease. Perithecium development is a complex cellular differentiation process controlled by many developmentally regulate...

متن کامل

Functional analyses of heterotrimeric G protein Gα and Gβ subunits in Gibberella zeae

The homothallic ascomycete fungus Gibberella zeae (anamorph: Fusarium graminearum) is a major toxigenic plant pathogen that causes head blight disease on small-grain cereals. The fungus produces the mycotoxins deoxynivalenol (DON) and zearalenone (ZEA) in infected hosts, posing a threat to human and animal health. Despite its agricultural and toxicological importance, the molecular mechanisms u...

متن کامل

Functional characterization of MAT1-1-specific mating-type genes in the homothallic ascomycete Sordaria macrospora provides new insights into essential and nonessential sexual regulators.

Mating-type genes in fungi encode regulators of mating and sexual development. Heterothallic ascomycete species require different sets of mating-type genes to control nonself-recognition and mating of compatible partners of different mating types. Homothallic (self-fertile) species also carry mating-type genes in their genome that are essential for sexual development. To analyze the molecular b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Eukaryotic cell

دوره 6 8  شماره 

صفحات  -

تاریخ انتشار 2007